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Diffusion controlled growth or dissolution of 
long cylindrical particles 

J. R. FRADE 
Departamento de Engenharia Cerdmica e do Vidro, Universidade de A veiro, 3800 A veiro, Portugal 

The analytical solutions for growth from zero initial radius of long cylindrical particles are 
extended to include arbitrary changes in volume. These analytical solutions are used to 
demonstrate the accuracy of numerical solutions required to obtain solutions for dissolution and 
for the initial stage of growth from finite initial size. 

1. I n t r o d u c t i o n  
Radial growth or shrinkage of fibres may occur during 
the processing of materials, which includes the devel- 
opment of superlattice-type structures, phase trans- 
formations in covalent ceramics, etc. These processes 
often involve both diffusion and heat conduction, and 
may be closely approximated by cylindrical symmetry 
[1, 2]. The present work describes diffusion-controlled 
growth or dissolution, assuming uniform temperature. 
However, diffusive mass transfer and heat conduction 
are described by similar dimensionless solutions for 
many processes described by one-, two- or three- 
dimensional equations. The radially symmetrical 
behaviour of cylinders requires consideration of two 
dimensions, which often makes them more complex 
than for plane layers or spherical symmetry. For 
example, the analytical solutions for diffusion in 
a plane layer or in the medium internally bounded by 
a sphere are easily computed from the error function 
eft(x) [3]; this is not the case for diffusion in a 
medium internally bounded by a cylinder. Neverthe- 
less, some solutions for growth from zero apply to 
one-, two- and three-dimensional processes [4, 5]. The 
solutions for spherical symmetry have also been ex- 
tended to include changes in volume for different 
partial molar volumes in the matrix and in the particle 
[6]. 

A number of numerical solutions have also been 
reported for the diffusion-controlled behaviour of 
spheres [7-15]. In contrast, numerical solutions for 
cylindrical symmetry are rare [1]. Kim and Yue [1] 
did not take into account the effects of volume 
changes or moving boundaries. Analytical solutions 
for growth from zero may also be useful to assess the 
accuracy of numerical methods, as previously shown 
for spherical symmetry [11-13]. 

Relatively simple quasi-steady-state approxima- 
tions have also been obtained for the diffusion- 
controlled behaviour of spheres, for both finite and 
infinite matrices. On the other hand, steady-state or 
quasi-steady-state solutions for cylindrical symmetry 
can only be obtained if the matrix is finite (hollow 
cylinder) [3]; this restriction has not been properly 
recognized [16]. A quasi-steady-state solution for dif- 
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fusion in a finite cylindrical layer was obtained by 
Valensi [17] to describe the diffusion-controlled oxi- 
dation of metallic wires; this has now been extended 
(see Appendix B). The applicability can be assessed by 
comparison between quasi-steady-state and e, xact 
solutions for growth from zero, or comparison be- 
tween quasi-steady-state and numerical solutions. 

2. T h e o r y  
2.1. Formula t ion  
An isolated cylinder is assumed to be surrounded by 
an infinite matrix in which the only convective flow is 
the radial velocity that must occur if the diffusing 
species or solute has different partial molar volumes in 
the particle and in the matrix; this flow is assumed to 
occur without hindrance. Diffusion in the matrix is 
assumed to control the mass transfer across the inter- 
face, equilibrium being maintained at the interface. 
Interfacial energy is also assumed to have a negligible 
effect on interfacial conditions. The cylinder is as- 
sumed uniform in composition, with constant proper- 
ties; this is also assumed for the initial properties and 
composition of the matrix. The partial molar volumes 
in the matrix are assumed constant, but do not need to 
be the same for solute and solvent. Therefore 

Yl = ~ Civ~ = t (1) 
i=1  i = l  

where Yi is the volume fraction of species i, Ci is 
the molar concentration and v~ is the partial molar 
volume. 

Changes in volume at the interface may give rise to 
a volume average velocity U, which includes a contri- 
bution for every component: 

U = ~ Uiyl (2) 
i=1  

The velocity Ui includes the effects of diffusion and 
radial convection. Therefore, continuity for cylindrical 
symmetry requires 

~Ci l(~(rUiC~)) 
~-  + -r ~r = 0 (3) 

645 



where r is radial distance and t is time. Combination of 
Equations 1, 2 and 3 leads to 

U(r) = a U(a) (4) 
t" 

where a is the radius of the cylinder. 
If a single solute (species 1) crosses the interface 

between the cylinder and the matrix, its flux is related 
to the difference between the velocity of solute and 
that of the interface by 

ccdO (da ) 
dt - Cl(a)  - d~ -  Ul(a) (5) 

where Cc is the concentration in the cylinder. Transfer 
of the remaining components is assumed to cancel at 
the interface, which requires U~ = da/dt, for i r  1. 
Therefore, from Equations 2 and 5 

da 
U(a) = e - -  (6) 

dt 

where g is defined as 

= 1 -- Cc/) 1 (7) 

Note that Cr represents the ratio between the par- 
tial molar volumes in the matrix and in the cylinder. 
Therefore, radial convection will occur and must be 
considered if e is significantly different from zero. 

Diffusion can also be related to differences between 
the average velocity and the velocity of solute by 

D ~C1 - C ~ ( U -  U~) (8) 
~r 

where D is the diffusion coefficient. Combination of 
Equations 3, 4, 6 and 8 thus gives the material balance, 
and the change in radius is given by Equations 5 to 8: 

[o  a( a)l~ 
St ~ + (9) 

da o 
d~ = C~[1 - -vC(a ) ]  ~r, (10) 

where the index 1 (for solute) was dropped. Uniform 
initial conditions and constant boundary conditions 
correspond to 

C(a, t) = C a (11) 

C ( o e , t )  = Coo C(r, 0) - Coo (12) 

2.2. G r o w t h  f rom zero  
Equation 9 is a generalized material balance for mov- 
ing boundaries. Frank's solutions for growth from 
zero [5] are true only for very slow motion of the 
interface, or for nearly unit ratio between the partial 
molar volumes of solute in the cylindrical phase and in 
the surrounding matrix. However, the transformation 
of variables used by Frank [5] and other authors 
[6, 12, 13] can be used to obtain solutions for Equa- 
tion 9. On assuming 

r 
s = (13) 

(4Dt) 1/2 

a = 213(Dt) 1/z (14) 
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Equation 9 leads to the following ordinary differential 
equation: 

d2Cds 2 + - - 1  --21~132( dC ) = _ 2S dC 
s US Us (15) 

with the required boundary conditions 

C(13) = Ca; C(oe)  = Co~ (16) 

Transformation of Equation 10 gives the concentra- 
tion gradient at the interface as 

( d C )  = 2~3[Cc(l - vCa)] (17) USo 
The analytical solutions for growth constant 13 are 
now obtained by integration of Equation 15: 

C -- C a f l  -2) 
- -  exp[132(1 -- x 

Cr - Car) J~/, 

+ (I - 2e132)lnx]x-2dx (18) 

fo ~___~ X-2 exp[132(1 -- x -2) + (1 -- 2g132)lnx]dx 

(19) 

C~ - C~ 
qb - (2O) 

co(1 - c~v) 

The growth constant 13 is a function of a dimensionless 
driving force d~, and the volume change parameter e. 
Runge-Kutta  or multi-step methods can be used to 
solve Equation 19. Sequential selection of fix in- 
crements is useful to ensure that solutions will be 
stable and convergent, without undue computing 
time. The selection of 6x increments was based on the 
derivative 

0.0025x z 

exp[132(1-  x[ -2) + (1 -- 2~;132)1nxi] 

with an additional restriction 5xl ~< 0.0025. 
Table I contains a large number of solutions which 

can be used to predict growth rates for a very broad 
range of experimental conditions. The solutions 
for small 0O become nei~rly independent of volume 
changes, but growth constants [3 increase rapidly as 
qb tends to 1/(1 - e); this demonstrates the importance 
of volume changes. The effect of volume changes is 
related to a contribution by radical convection, which 
enhances the rate of transfer for net volume decrease 
(~ < 0). However, radial convection has the opposite 
effect when there is an increase in volume (a > 0). 

2.3. G r o w t h  f rom finite s ize 
The solutions for growth from zero (Equations 14 and 
19) fail for a transient stage of growth from finite size 
although they represent the asymptotic behaviour. 
Alternative solutions are thus needed for the transient 
stage. Note that experimental data usually correspond 
to a relatively small increase in size ao ~< a < 2ao, 
which may therefore fall in the transient regime. The 
finite difference method is described in Appendix A. 
This method was also used to obtain solutions for 
dissolution. 



T A B L E  I Solutions for growth from zero (Equation 19) 

e = --0.5 e = -0 .25 e = -0 .1  ~ = 0 e = 0.1 e = 0.25 e = 0.5 

0.01 0.000 863 
0.012 0.001 190 
0.015 0.001 760 
0.02 0.002 899 
0.025 0.004 253 
0.03 0.005 79 0.005 79 0.005 80 0.005 80 0.005 80 0.005 80 &O05 81 
0.04 0.009 37 0.009 38 0.009 39 0.009 39 0.009 40 0.009 40 0.009 42 
0.05 0.013 53 0.013 55 0.013 57 0.013 58 0.013 58 0.013 60 0.013 62 
0.07 0.023 22 0.023 30 0.023 34 0.023 37 0.023 40 0.023 44 0.02352 
O. 1 0.040 34 0.040 56 0.040 70 0.040 78 0.040 88 0.04101 0.04124 
0.12 0.040 34 0.040 56 0.040 70 0.040 78 0.040 88 0.04101 0,04124 
0.15 0.073 02 0.073 78 0.074 24 0.074 50 0.074 86 0.075 33 0.07611 
0.2 0.1082 0.1099 0.1109 0.1116 0.1123 0.1134 0.1153 
0.25 0.1438 0.1469 0.1488 0,1502 0.1515 0.1535 0.1570 
0.3 0.1787 0.1837 0.1868 0.1889 0.1911 0.1944 0.2001 
0.4 0.2440 0.2540 0.2603 0.2646 0.2690 0.2759 0.2878 
0.5 0.3016 0.3177 0.3281 0.3352 0.3426 0.3542 0.3748 
0.7 0.3933 0.4235 0.4434 0.4577 0.4724 0.4962 0.5400 
1 0.4843 0.5355 0.5707 0.5963 0.6239 0.6694 0.7579 
1.2 0.5240 0.5874 0.6320 0.6650 0.7010 0.7613 0.8827 
1.5 0.5644 0.6427 0.6993 0.7421 0.7896 0.8711 1.043 
2 0.6031 0.6985 0.7700 0.8254 0.8883 1.000 1.250 
2.5 0.6238 0.7300 0.8115 0.8757 0.9498 1.085 1.402 
3 0.6360 0.7492 0.8374 0.9078 0.9900 1.142 1.516 
4 0.6489 0.7701 0.8662 0.9441 1.037 1.212 1.668 
5 0.6551 0.7804 0.8808 0.9629 1.061 1.251 1.762 
7 0.6607 0.7898 0.8942 0.9804 1.084 1.288 1.862 

10 0.6637 0.7949 0.9017 0.9902 1.098 1.311 1.927 
12 0.6646 0.7965 0.9039 0.9932 1.102 1.317 1.948 
15 0.6654 0.7977 0.9058 0.9956 1.105 1.323 1.966 
20 0.6659 0.7987 0.9072 0.9975 1.108 1.327 1.980 
25 0.6662 0.7992 0.9079 0.9984 1.109 1.330 1.987 
30 0.6663 0.7994 0.9083 0.9989 1.110 1.331 1.991 
40 0.6665 0.7997 0.9086 0.9994 1.110 1.332 1.995 
50 0.6665 0.7998 0.9088 0.9996 1.111 1.332 1.997 
70 0.6666 0.7999 0.9089 0.9998 1.111 1.333 1.998 

100 0.6666 0.7999 0.9090 0.9999 1.111 1.333 1.999 

The accuracy of the numerical method is demon- 
strated in Table II for large ranges of the relevant 
parameters qb and e. The differences between the 
numerical predictions and the corresponding exact 
solutions are usually less than 0.2%. 13n = a/(4Dt)1/2 is 
the numerical asymptotic solution for a very large 
increase in size (up to a/ao = 105), and qb(13,, e) is the 
exact solution for growth from zero (Equation 19). 

Figs 1 to 3 compare growth from zero and finite 
initial size plotted against dimensionless time in three 
different forms. Fig. 2 shows the obvious plot against 
dimensionless time but introducing the factor 213; 
Fig. 2 gives a common asymptote for all solubilities 
(qb) although the value of qb still affects initial growth. 
However, the form used in Fig. 3 shows that the 
asymptotic behaviour (Table I) may be used for a very 
wide range of solubilities and size greater than twice 
the initial value if a different time dependence is 
employed: 

a = (4132Dt + a2) 1/2 (21) 

For very small qb, this dependence is nearly true from 
the beginning. In addition, some transient effects may 
also account for a slower initial stage, which contrib- 
utes to minimizing the differences between the actual 

solutions and Equation 21. For example, the inter- 
facial energy may cause decrease in driving-force for 
growth. 

2.4. Disso lu t ion  
Figs 4-6 show normalized dissolution curves. The 
shape of these curves is sensitive to the value of qb, 
especially in the intermediate range, which may be 
useful for evaluating both d~ and the diffusion coeffi- 
cient D from experimental data. However, such an 
exercise should avoid using data for the final stage 
(a < 0.1ao) because that stage may well be influenced 
by interfaciaI energy which can accelerate the last 
stage of dissolution. 

Differences in partial molar volumes in the particle 
and matrix may contribute to radial convection to- 
wards the interface, for decrease in volume (e > 0), or 
outwards radial convection, for increase in volume 
(~ < 0). The increase in dissolution times with decreas- 
ing e is due to this effect, especially for large [qb[ 
(Table III). However, outwards radial convection dur- 
ing the initial stage may also retard solute accumula- 
tion when the volume of the particle has decreased to 
a small fraction of its initial value, especially for large 
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T A B L E  II  Comparison between numerical solutions of partial differential Equation 9, [3, = a/(4Dt) 1/2 for up to a/ao = l0 s, and analytical 
solutions for growth from zero ~(1~,, ~) (Equation 19) 

e = 0  E = 0 . 5  ~ =  -0 .5  

0.01 0.041 57 0.01001 
0.10 0.1847 0.1001 
0.20 0.3146 0.2001 
0.50 0.782 0.501 
0.65 
0.75 1.542 0.751 
0.90 2.883 0.901 
0.95 4.311 0.951 
0.99 9.23 0.989 
1.00 
1.50 
1.90 

0.041 49 0.010 01 0.041 62 0.01001 
0.1811 0.1001 0.1886 0.1000 
0.3001 0.2002 0.3317 0.2002 
0.650 0.5005 1.075 0.5007 

4.148 0.650 

1,417 1.001 
2.932 1.502 
8.53 1.902 
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Figure 1 Growth from finite size (full lines) for e = (a) -0 .5 ,  (b) 
0 and (c) 0.5 with ~ = 0.5. The dashed lines represent the corres- 
ponding solutions for growth from zero (Equations 14 and 19). 
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Figure 3 Growth  from finite size for ~) = (a) 0.001, (b) 0.] and (c) 0.5 
with ~ = 0. The dashed line represents Equations 14 and 19. 
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Figure 2 Growth  from finite size for dp = (a) 0.001, (b) 0.1 and (c) 0.5 
with e = -0 .5 .  The dashed line represents growth from zero (Equa- 
tions 14 and 19). 
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Figure 4 Normalized dissolution curves for 
(b) 0.01, (c) 0.1, (d) 1 and (e) 10 with e = -0.5.  
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Figure5 Normalized dissolution curves for - d ~ = ( a )  0.001, 
(b) 0.01, (c) 0.1, (d) 0.2, (e) 0.5, (f) 1 and (g) 10 with e = 0. 

T A B L E  I I I  Dimensionless times required for complete dis- 
solution 

--  qb td D /ao  

e = - 0 . 5  ~ = 0  ~ = 0 . 5  

0.001 2177 2176 2175 
0.01 155.9 155.4 154.9 
0.1 10.22 9.91 9.59 
0.2 4.58 4.32 4.05 
0.5 1.711 t.512 1.310 
1 0.897 0.742 0.582 

10 0.2062 0.1413 0.0763 

semi-infinite media, which cannot be described by 
steady-state or quasi-steady-state solutions. On the 
other hand, spherical symmetry may be described 
by steady-state solutions for both finite and infinite 
media [ 11, 13]. 
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Figure6 Normalized dissolution curves for - ~ = ( a )  0.001, 
(b) 0.01, (c) 0.1, (d) 1 and (e) 10 with ~ = 0.5. 

I qbl; this may allow faster dissolution during the final 
stage (Fig. 4). Note that the residual volume is 1% for 
a = 0.1ao. 

3. Conclusions 
A revised formulation of the relevant material 
balances was found suitable for extending the range 
of analytical solutions for two-dimensional diffusion- 
controlled growth; this includes volume changes. 
Exact analytical solutions describe growth from zero 
initial radius. These asymptotic solutions were found 
useful to demonstrate the accuracy of numerical 
methods required for transient regimes, i.e. dissolution 
or growth from finite size. A transient stage for growth 
from finite size usually reduces to the time required to 
double the initial size or shorter, when a suitable time 
dependence is used. The quasi-steady-state solutions 
fail for large matrices. 

The solutions for very small driving force [q b[ are 
nearly independent of volume changes. In constrast, 
volume changes are very effective for large ]d~ I; this is 
true for both dissolution and growth. 
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2.5. Limitations of quasi steady state solutions 
Steady-state or quasi-steady-state solutions are simple 
and commonly used. The solutions for diffusion- 
controlled growth of a long cylinder are derived in 
Appendix B for a finite matrix. The simplest case is 
for e = 0, which reduces to 

where B = bo/ao is the radial ratio between the outer 
boundary of the matrix and the cylinder. This method 
fails for an infinite matrix with cylindrical symmetry, 
because there is no finite limit for factor ln B. This 
limitation is also true for one-dimensional diffusion in 

Appendix A: Finite difference method 
Dimensionless variables were used to minimize the 
number of parameters required to obtain solutions for 
growth from finite size or dissolution. The relevant 
variables are a dimensionless time z, a space variable 
which immobilizes the boundary, and a modified 
concentration function F ( C , x )  which assists the 
convergence of the method. We have 

x = r/a (A1) 

= tD/a  2 (a2) 

( r / a ) l / 2 ( C  --  Coo) 
F = (A3) 

C,(1 -- Car ) 
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Equations 9 and 10 are thus transformed to give 

R 2oF _ ~ZF x - ( e / x ) ( d ( R 2 ) ) e F  
~ ~ + y. \ ~ ~-~ 

d(R 2) F 
+ ~ 7 -  [~x-2  -- l + x - 2 ] ~  - (A4) 

d(R 2) ~F 
- 2 ~ x ~  + ~ (A5) 

d'c 

F(1,~) = - d~ F(Go,z )  = 0 F(x,O) = 0 

(A6) 

An implicit finite-difference algorithm [18] was used 
to solve Equation A4. The concentration gradient a n d  
the change in radius (Equation A5) were computed 
from the first three radial mesh points at time D-~: 

(~F)~x 1 = 2 F 2 -  1"5F1 -0"5F3 ( A 7 ) s x  

This was corrected after computing a new concentra- 
tion profile for time D. 

Radial mesh points were redistributed every 15 time 
steps. Radial mesh sizes 8x were equal in a range 
1 < x < 1 + ~ ,  and allowed to increase with dis- 
tance; 8x~ = 1.18x~_~ for x > 1 + 80. 8D corresponds 
to the boundary layer thickness: 

8 0 ~- ( ~ F / ~ x ) I  

8 X  -~- ( X  i - -  X i _ l )  = 8 D / n  1 

(A8) 

i = 2 , . . . , n ,  

(A9) 

6xi = 1.18xi-1 i = nl + 1 . . . . .  n 2 (A10) 

Xo = 1 (All)  

Truncation was also used for x,2 ~> 1 + 10080, with 
an additional restriction x.2/> 1 + 1/]qb] for very 
small IdOl. The numerical solutions are not signifi- 
cantly changed by using truncation for larger dis- 
tances. 

Formulae for radial derivatives were derived from 
a truncated series expansion; this gives standard for- 
mulae [18] for the range where mesh points are 
equally spaced and 1 ~ x ~< 1 + 8D. However, modi- 
fied formulae are needed for x > 1 + 8D, where 
8xi+l = 1.18xi: 

~F Fi+ 1 -- 1.21Fi-1 + 0.21Fi 
- (A12) 

~xi 2.318xi 

~2F . 2Fi+ 1 -- 4.2Fi -I- 2.2Fi-1 
~x 2 - 2.31(8xi)2 (A13) 

The time increments were also adjusted after every 
time step to control the changes in radius a and the 
increase in boundary layer thickness per time step. 
These criteria correspond to 

0.01R 
8~ ~< - -  ( A 1 4 )  

IdR/dx] 

8z ~< 0.015z (A15) 

The stability and convergence of this numerical 
method were assessed by making the radial and time 

mesh sizes smaller and seeing when the effects became 
negligible. The condition is true for nl = 100 (see 
Equations A9 and A10) and for Equations A14 a n d  
A15, used to control the time mesh sizes. Sequential 
control adjusts radial and time mesh sizes to the 
actual radius of the cylinder, which is required for 
computing a very large increase in size without excess- 
ive computing time. For  example, increases in size by 
five orders of magnitude (a = 105ao) corresponds to 
an increase in time scale by a factor of 101~ this was 
easily computed by using the variable criteria of Equa- 
tions A14 and A15, but cannot be dealt with if a con- 
stant mesh size is used. Note also that for a > 103 the 
effect of a finite initial size becomes negligible, and the 
accuracy of numerical solutions could be assessed by 
comparison between numerical solutions for growth 
from finite initial size and exact asymptotic solutions 
for growth from zero. 

Appendix  B: quasi steady state solutions 
for a f ini te matr ix  
The solutions for a finite matrix are easily obtained 
from quasi-steady-state requirements; these are 
~C/~t ~- O, and very slow motion of the interface. If 
r = b is the outer boundary, Equation 9 gives 

( d C )  _ C o ~ -  C. (BI) 
-~r a aln(b/a) 

which can be combined with Equation t0 to give 

da D(C~o - C.) 
- (B2) 

dt Co(1 - C , v ) a l n ( b / a )  

Equations 4 and 6 relate the outer boundary r = b to 
the change in radius of the cylinder, which gives 
d(b z) = ~d(a z). Therefore, integration of Equation B2 
gives 

(R 2 -  1) [21nB + l n ( 1  + e ( R B S 1 ) ) ]  

- 2R21nR + --ln~ 1 + ~ -  

4d~Dt 
- a2  (B3) 

where B = bo/ao, R = a/ao and, ~ = 1 -  vCc. The 
simplest case is for ~ = 0, when b = bo is constant: 

( a 2 - a ~ ) ( l n B + ~ ) - a 2 1 n ( a ~ )  = 

(B4) 

The solution obtained by Valensi [17] for the diffu- 
sion-controlled corrosion of metallic wires corres- 
ponds to B = I  and e = 0 ,  which is the simplest 
case. On the other hand, for a large size ration 
B, E(R  z --  1 ) / B  2 ~ 1, and Equation B3 then reduces 
to 

4~Dt (B5) (R z -- 1)(1 + 21nB) -- 2R21nR - a~ z 
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